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INFINITE DIMENSIONAL POLYTOPES

KA-SING LAU

Introduction.

In [10], Phelps defined the class of g-polytopes to be the family of
finite codimensional slices of Choquet simplexes. He showed that the
family of finite codimensional B-polytopes coincides with the usual finite
dimensional polytopes. Thus the class of S-polytopes properly contains
both the latter class and the Choquet simplexes, and they share a num-
ber of properties of bath classes. An infinite dimensional B-polytope
cannot, however, be centrally symmetric and this has been shown (in
[10]) to be the basis for the fact that a number of ‘“permanence proper-
ties’’ of finite dimensional polytopes are no longer valid for g-polytopes.
In what follows, we define a larger class of polytopes: the compact con-
vex sets which are affinely homeomorphic to closed finite codimensional
slices of unit balls of the duals of Lindenstrauss spaces (a Banach space
whose dual is an L(u) space). The definition was originally suggested
by J. Lindenstrauss and this class of polytopes contains centrally sym-
metric sets. We call this class of sets the class of L-polytopes. In section 1,
we give some results concerning the unit ball of an L(x) space. In section 2,
we characterize the maximal faces of L-polytopes. Extension properties
for affine continuous functions on closed faces also hold in the class of
L-polytopes. In section 3, we show that every extreme point of an L-poly-
tope is a polyhedral vertex and in section 4, we give examples that some
properties for finite dimensional polytopes cannot be generalized.

The author wishes to acknowledge his indebtedness to Professor
R. R. Phelps for many fine suggestions and constructive criticism for
the preparation of this paper.

1. Basic results.

In this section, our main task is to show that all maximal faces of the
unit ball of an L!(u) space are affinely isomorphic. We also give a char-
acterization of the maximal faces of the unit ball of an L'(u) space where
4 is o-finite. For the sake of completeness we include some results which
may be known but for which we know of no reference.
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Lemma 1.1. Let K be a convex subset of a linear space. Suppose that A
18 a convex subset of K, then the set

A'={weK: lx+(1-A)ze A, for some zeK and 0<i<1}

i8 a face of K containing A. Moreover, A" equals the intersection of all faces
of K contatning A.

Throughout the section, we consider the space LY(X,u) only. We let
B denote the unit ball of LY(X,x) and F will denote a maximal face of B.
(We make the convention that a maximal face is a maximal proper face.)
For simplicity, we just take u to be a positive measure. The propositions
proved here can be easily generalized to an arbitrary measure (except
Theorem 1.8). From Lemma 1.1 and also from the separation theorem,
it follows that if A is a convex subset of {x € B: ||z||=1}, then there exists
a proper face of B containing 4. ‘

ProrosiTiON 1.2. Every maximal face of B is norm closed.

ProoF. Let F be a maximal face and let F denote the closure of F;
then F is convex and each element of F is of norm 1. Thus, there exists
a proper face F, of B containing F. By maximality of F we have F< Fc
F,cF.

For each xz e LY(X,u) we define suppz={t € X: (¢)+0}. This is de-
fined to within a set of measure zero.

Lrmma 1.3. Let A be a convex subset of {x € B: ||jx||=1}. Then for any
x,y € A, the set suppztnsuppy— has measure zero.

Proor. Let E =suppztnsuppy—. If u(£)>0, we have |x+y| < |z|+]y|
a.e. on E, therefore

Vie+yl < § i+l
E E

Consequently, we have
§tle+yl < §4(lzl+1y) = 1,

contradicting the convexity of 4.

LeMmA 1.4. Let F be a maximal face of B and suppose x € F. If y ¢s an
integrable function of norm 1 such that
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suppyt < suppxt and suppy~ S suppz-,
then ye F.
Proor. From Lemma 1.3, it follows that for any z € F, the sets
suppat Nsuppz- and suppz- Nsuppzt

have measure zero. By hypothesis, we see that the same holds if we
replace x by y. Thus, we have for any 4 € [0,1],

[Ay+(1—A)2| = Aly|+(1—A)|z| a.e.
It follows that

§lAy+ (1 —2)2| = {(Alyl+(1—A)fl) = 1,

so conv ({y}UF) is a convex subset of {x € B: [x]|=1} and there exists a
proper face of B containing conv ({y}UF). By the maximality of F, we
have ye F.

LemmA 1.5. Let F be a maximal face of B. Then for any o-finite measur-
able set B of positive measure, there exists y € F such that suppy=2E.

Proor. We assume first that u(H)<oo. It suffices to obtain z e F
such that suppxz 2 £. Indeed, if such a function z exists, let

E, = suppxtnl, E,=suppz-nk,
then B nE, is a null set and B ,UE,=E. Let

Yy = (,"‘(E))—I(XE,_XEg)-

By Lemma 1.4, we see that y € ' and suppy=E.
We obtain the function x as follows. Let

o = sup{u(suppznE): zeF}.

We will first find an « € F such that u(suppznZ)=a«. To this end, for
each positive integer n, we choose z, € F' such that

u(suppx, N E) > o —n-t

and we let x =3 2"z, . Since F is closed, it contains # and by Lemma 1.3,.
the set suppz,*nsuppx,,~ is a zero set for any m,n, hence suppz=2
suppz,, for each n. Consequently

o« = u(suppz n E) 2 u(suppzx, N E) > ac—n-t.
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Suppose now that u(Z,)>0 where E,=E \ suppz. If
u(suppz N E) =0 forall zeF,
then for w=(u(E,))xg,, we would have
A2+ (1—A)w| =1 for A€[0,1], ze F,

hence conv({w}uF) would be a convex subset of {xe B: |z|=1} and
thus contained in a maximal face. This contradiction shows that there
necessarily exists z in F' with

u(suppzn Ey) > 0.
By Lemma 1.4, we may assume that suppz < E,. Consequently, the func-
tion z;=4(2+z) is in F and
Suppz, = suppz U suppz .
It follows that
u(suppz, N E) = p(suppz n E,) + u(suppz N E) > o,

an impossibility which proves that E,=E \suppxz has measure zero.
Thus E csuppw, and the proof for the case u() < o is complete.

If u(E)= oo, we let E=U | B, where E, are disjoint measurable sets of

finite positive measure. For each Z,, there exists y, € F such that
suppy;=E,; a.e. Let y=3;,2-%,. By Proposition 1.2, y € F and

suppy = U suppy; = U, E; = E ace.
From the above lemma, we see that for any o-finite measurable set #,
there exists y in F, suppy+=_E, a.e., suppy—=E, a.e. where K, U B,=FE,

E,nE,=0 and by Lemma 1.3, this decomposition is unique within a
set of measure zero.

THEOREM 1.6. Any two maximal faces of the unit ball B are affinely
1sometric.

Proor. Let F be a maximal face and let
F,={&xeB: 220, |z|=1}.

‘We need only show that F and F, are affinely isometric.

Define ¢: F — F, by ¢(x)=|x|. It is easily seen by Lemma 1.3 that ¢
is affine and isometric. To show that it is onto, let x € F;, and let
E =guppz. Then there exists a decomposition £ =E,UE, where

E, = suppy*, E, = suppy-
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for some y in F. Let 2’ =z (x5, — xx,)- By Lemma 1.4, we have 2’ € F
and ¢(z')==z.

THEOREM 1.7. Let F be a maximal face of B then

AffF = 37 Azt 3P M=1, z,eF, i=1,...,m, neN}

18 a hyperplane in LMX,u).

Proor. We need only show that the linear subspace spanned by ¥ is
LMX,u). Let x € LN(X,p) and let

E, = suppz*, K, = suppz—.
By Lemma 1.5, we can find measurable sets {&,;}; ;_1 , such that
Ey = EyVEy, Ey=E,UE,

and y,,y, € F with
suppy,* = By, suppy,” = By,  suppy,t = Hy, suppy,” = Hy,.
Let for 4,5=1,2

Ty = x.xEq/”x‘in"” if ”x'%Eq”*O s
=0 otherwise .
Then

T = ”x'XEu”‘xn_ le: xmp,ll - (—219) + ”x'XEn“‘zm - ”x'lEn”'(—xzz)

where 2;;, — %9, Zg;, — Xy, are in lin 7.

REMARK. By the above theorem, the map ¢ in Theorem 1.6 can be
extended to an isometry ¢ of LY(X,u) onto itself. If we let C,, and C,
be the cones generated by the maximal faces F and F,; in Theorem 1.6,
then @ is an order isomorphism with the orderings induced by C, and C,.

TrEOREM 1.8. Let (X,u) be a o-finite measure space. Then every mazx-
tmal face F of the unit ball B of L\(X,u) is of the form

Fy={xeB: suppztcY, suppz-<sX\Y and |z||=1},

for some measurable set Y. Conversely, every set of the form Fy is a maxi-
mal proper face of B.

Proor. It is easy to check that Fy is a maximal face. On the other
hand, if ¥ is a maximal face, by Lemma 1.5, there exists an « in ¥ such
that suppz=X. Let Y =suppz+, we claim that F, 2 F. Indeed, if y € F,
then from Lemma 1.3, we see that suppyt< Y a.e. and suppynY
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has zero measure, hence suppy-< X \ Y, s0 y € Fy. Since F is a maximal
face, it follows that Fy =F.

We conclude this section with some properties of the faces of the unit
ball B. These properties will be used later on.

LemMma 1.9. (Decomposition lemma.) Suppose that V is a vector lattice.
If {x;:iel} and {y;:j €J} are finite sequence of nonnegative elements of
V and if

Dier T = 2jes Vi
20, (4,5) € I xJ, such that

Ty = zjesz’j Gel) and y; = Zielzij (Jed).

then there exist z

Proor. Ci.[9, p. 61].

ProrosrTioN 1.10. Let F,G be proper faces of the unit ball B such that
Fn—G=0. Then conv(FUQ) is a proper face of B.

Proor. We claim that if x € conv(Fu(@), then |z||=1. We can write
z = Ax;+(1—-A)2'

where x; € F', 2’ € G and 1 € (0,1). By the remark following Theorem 1.7,
we see that all the orderings generated by maximal faces are isomorphic,
hence we may assume that F is contained in the maximal face

F,={xeB: 20, |z|=1}.
The cone generated by F, defines a lattice. Write
¥ = amy— (1 — )3, Xp%s, € Fp,0€(0,1).

(If «=1, the claim follows trivially, for « =0, the proof is same as below.)
Since G is a face of K, we have z,, —x; € G. Let x=2+—2~. We then have

xt—x= = Axg+o(l—A)zy— (1 —a)(1 —A)zsy,
that is,

zr+(1—o)(1=A)ag = =+ Az, + (1 —A)xy .
By the decomposition lemma, there exist u;; 20, z;; € F,,4=1,2,5j=1,2,3,
such that

xt = Z§=1,“1jz1j s (I=o)(1-A)zy = 2}9’=1.“21225 »
= D7 Mata, My = Dioifpts,
(1 =)y = Z?=1.“iaz«;3 .
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Since z3€ —G, 2, € F, 2, G, by the above equations, we have 2z,
293€ — @, 2y € F and 2z,,€ (. But since Fn—@G and Gn—¢ are void
sets, we have py,=0, uy;=0. The second, forth and fifth of the above
equations become

(L=l —)zy = pg12g1, ATy = pip21p, (1 —2A)Ty = p132y5.
Substituting into the first and third equation, we have

ot = py 2y A2+ o(l = Ay,
& = 2+ (1—-A)(1—a)rg,
80
Lz ol = ot + o]l = 241 2 1

and hence |[z||=1 as asserted. We may therefore assume that both
F and @ are contained in the maximal face F,. To show that conv(FuU@)
is a face let

Az + (1 —A)z, € conv(FUG),

where z,,2, € B, 0<i<1. Then
Ay + (1 =4y = oyy + (1 — )y,

where y, € F, y, €@, and 0=« =1. If x=0 (or x«=1) then z,,z, are in @
(or F') and hence in conv(FUG@G). If 0<a<1, by the decomposition

lemma, there exist u;20, z;; € Fy, i,j=1,2 such that

Ay = ppy23+p1s21zs (L=2A)Zy = Uy 293+ tao20s »
oYy = PuZitpaRars  (1—&)Ys = Uya2ip+ HaaZes -

The third and the forth equations imply 2y, 2y € F and z,,, 2,5 € G.
Hence by the first and second equations, we have z,, z, € conv (F U@).

ProposiTioN 1.11. Suppose F is a finite dimensional face in a mazximal
face F, of B. Then there exists a face F' in F, such that FnF'=@ and
conv(FUF')=F,.

Moreover, if v, € F and x, € F', then ||ox,+ By =|x| + |B| for any real
o, 0.

Proor. If F,=F, then take F; to be the empty set. Hence, assuming
that F,=+F, we will first show that there exists a face G in F; disjoint
from F. In fact, let € F,\ F and let K=F,nAff(Fu{z}). Then K is a
finite dimensional compact convex subset of F;. Since K + F', there exists
an extreme point «, of K which is not in F. Consider

Q={z: 2+(1-A2 =2, O0<i<l, 22 €F}.
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Then @ is a face in F; disjoint from F. Let F’ be the union of all faces in F,
disjoint from F'; it too is a face, in fact, let x,,x, € F, then there exists
two faces G, Gy in F; disjoint from F such that z, € G, z, € G,. By
Proposition 1.10, the set conv(@,U@,) is a face contained in F, disjoint
from F, thus

Axs+(1—A)x, e F for some O0<A<1.

To show that it is a face, let
A+ (1—-Az, e F', 0<A<l.

Then Ax,+(1—A)z,€ H for some face H in F’, hence z;, z, e Hc F'.
We claim that conv(FUF')=F,, for if this were not true, then there
exists x; € F;\ conv(FUF’) and arguing as above, we can find a face
containing z, disjoint from F and not contained in F’. This is a contra-
diction.

To show the last assertion, we see that if « and g have the same sign,
then it is clear that equality holds since the norm is additive on the cone
generated by each maximal face. If x>0, <0, say, let F''=conv
(Fu—F'), it suffices to show that this, too, is a maximal face. As F,
is of codimension 1 in B, also F'’' (which is a face by Proposition 1.10)
has codimension 1 in B, hence it is maximal. By the remark following
theorem 1.7, we have B=conv(F''u—F'), and the norm is additive on
the cone generated by F'/, thus

llowy + (=B} (=2l = || +Bl-

2. Facial properties of L-polytopes.

Let K be a convex subset of a linear space and let H be a convex
subset in K. We say that H is of codimension n in K if there exists an
affinely independent set {,,...,2,} in K \ Aff H such that

Aff(H u{x,,. .., z,}) = AffK.
Suppose that A,,...,k, are affine functions on K and that
My ={xeK: hfz) =0, ¢=1,...,n}.

Then My is called a finite codimensional slice of K. If K is a compact
convex set and if M is closed in K, we call M  a closed finste codimen-
ssonal slice of K.

DEeFINITION 2.1. A compact convex set H is called an L-polytope if H
is affinely homeomorphic to some M where K is an L-ball. (The unit
ball of the dual of a Lindenstrauss space with the w*-topology cf. [7].)
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Note that in the definition of L-polytopes, we do not assume M5 to
be of finite codimension in K. We will show, however, that an L-polytope
is affinely homeomorphic to some M g such that M 4 is of finite codimen-
sion in K. We first give two lemmas which will be useful in what follows.

Lemma 2.2. Let F be a convex subset of a linear space E, and let

M ={xeF: hx)=0, t=1,...,n},
M;={xeF: hx)=0,4%j,1€ {1,...,n}}, j=1,...,n,

where by, 1=1,. .., n, are affine functions on F. Suppose that for each j,
there exist x;,y; € M; such that hy(z;) <0, hi(y;) > 0; then we have:
(i) For each z€ F, there exists A>0, A;, ;=20,1=1,..., n, such that

AT A4 B =1

dz4 230 A+ 30 By e M,

(ii) M ¢s of finite codimension n in F.

and

Furthermore, if F is a compact convex set and if by, $=1,...,n are conti-
nuous affine functions on F, then there exists k € R+ such that the A in (i)
may be chosen greater than k for all ze F.

Proor. Without loss of generality, we assume that 0 € M. Define the
map
T: Rr~linF[linM

such that T(e;)=Z;, ¢=1,...,n, where Z; is the equivalence class of x;.
For any z € F, we have

z—>"  hz)z;€linM ,

thus Z=3" h(e)r;. If we let a=(x,...,0,)=(R1(2),...,0,(2)), then
T(x)=%. Let I be the subset of {1,...,n} such that x;<0 and let
J={1,...,n}\ 1. Then

0 =247 (—a)T(e;) =25 (—;)T(ey)
= Z 4+ 27 (=)@ + 25 o — byl [li(y:) )T -
(Here we use the fact that Z,= (hy(x;)/h(y;))7;.) We let
(%) A= (1437 (— o)+ 25 oo —ha(®)[R(ys))
Further for t+=1,...,n we let

A’i=0 if “éI,
=“¢2‘ if OCEI,
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Bi=0 if céd,
o =) by ))A i aed.

Then we have >0, 4;, 5,20 for ¢=1,...,n,
A+ A+ 2T B =1
22437 AT+ 20 B = 0,

AZ+Z?=llixi+2?=1ﬂiyiEFﬂlinM =M.

and

80

Hence (i) is proved and (ii) follows from this directly. To verify the last
assertion, we notice that when ¥ is compact and each &;,3=1,...,n is
continuous, the set

{hz): i =1,...,n,2z€ F}

is a bounded set in R, hence the equation (*)is uniformly bounded away
from 0. That is there exists k> 0 such that A>% >0 for all zin F.

Lemuma 2.3. Let K be a convex set and let M be a finite codimensional
slice of K. Suppose that M, is a face of M and that F is the smallest face of
K containing M,; then M, is of finite codimension in F'.

Suppose K is compact. If M is a closed finite codimensional slice of K
and M, is closed, then F is compact.

Proor. Let
M=1{xeK: hiz) =0, t=1,...,n},

where h;4=1,...,n are affine functions on K. Since F contains M,

we have
My={zxeF: hz) =0, i=1,...,n}.

We may assume that n is the smallest integer such that the above
equality holds. Let

M,-:{xeF: hl(x)=0, ‘i:}:j,i:l,,_.,n}.

Then M GM;ZF. We claim that for each je {1,...,n}, there exist
z;,9; such that h;(x;) >0, h;(y;) <0. Indeed, let

F' ={&eF: A+(1—-2AyeM where ye F and 0<i<l1}.
Then F' is a face of F containing M, and thus F’'=F. Since M;+F,
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there exists x;€ F \ M; and we have h;(x;) >0 (or <0). There also exist
y;€F and 0<A<1 such that

A+ (1—Ay; e M, .

It follows that h(y;) <0. Hence we have found {z,},, {y;}i., which
satisfy the conditions of Lemma 2.2, and therefore M, is of finite co-
dimension in F.

To show the last part, let {z,},.; be a net in F. By the above lemma, we
have £>0,4,>k>0,4,,,$;,20,0€1, i=1,...,n, such that

lzx+2?=l j'iapql_zz',l;l Igia =1

Aot 2icq Aini+ 20y Bintyi € M.

and

By compactness, we may assume that {1,} converges to 1>0,{2,.}
converges to 4;,{f;,} converges to f,,s=1,...,n and {z,} converges to z.
Hence

Mot 20y A+ 20 By e My < F
and

1+ZZ”=1 li+2?=1 ﬂi =1.

Since F is a face and 1> 0, we have z € F which shows that F is compact.

CoRrROLLARY 2.4. (Lazar). Suppose K is a compact convex set and that M
18 a closed finite codimensional slice in K. If F is a closed face of M, then
there exists a closed face F, of K such that F=MnF,. If F is a Gy set in
H,nK, then F is a G4 set in K.

Proor. The first part follows directly from Lemma 2.3. The second
part follows from the last part of [10, Lemma 3.4].

ProposririoN 2.5. Let H be an L-polytope. Then there exists a closed
finite codimensional slice M i of an L-ball K such that H is affinely homeo-
morphic to M and M g s of finite codimension in K.

Proor. Without loss of generality, we assume that
H={xeK: kfz)=0,3s=1,...,n}

where k,,...,k, € A(K’') and K’ is an L-ball. Let ¥ be the smallest face
of K’ containing H. If F =K', then by Lemma 2.3, the proof is complete.
If F+K’, then F is a proper face of K’. Again, by the same lemma, it
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is compact, thus it is a Choquet simplex. Let K =convF U — F). Then K
is an L-ball and

H={xeK: hx) =0, i=1,...,n},

where A, is the restriction of £, to K, 4=1,...,n. Lemma 2.3 shows that
H is of finite codimension in ¥, hence H is of finite codimension in K.

Let H be an L-polytope. We call an L-ball K with the property of
Proposition 2.5 to be an envelope of H. Our next three propositions are
concerned with maximal faces of L-polytopes. We make the convention
that maximal face shall mean maximal proper face.

LemMA 2.6. Let X be a Banach space isometric to an LY(u) space. Suppose
that F s @ mawximal face of the unit ball B(X). T'hen every maximal face of F
18 of codimension 1 in F.

Proor. Let F, be a maximal face of F. If F, is not of codimension 1
in F, there exist z,y in F such that F,, z and y are affinely independent.
Since F' is a linearly closed and linearly bounded, we may assume that
z,y are such that Aff{x,y} n F=[z,y]. Let

Fy,={zeF: Jz+(1—A)2 = x for some 2’ € F and 0<i<1}.

Then F, is a face which is not equal to F; and does not contain the point y.
By Proposition 1.10, conv (F'; U F,) is a proper face of F. This contradicts
the fact that F; is a maximal face of F.

ProPOSITION 2.7. Suppose that H, is a face of an L-polytope H. Then H,
is @ maximal face of H if and only of H, ¢s of codimension 1 in H. (We
assume that H is not a single point.)

Proor. We need only prove the necessity. Let K be an envelope of H.
Let K, be the smallest face of K containing H. Then K, is either an L-ball
or a Choquet simplex (Lemma 2.3). In the latter case it is a maximal
face of an L-ball. Suppose now that H is of codimension = in K,. Let K,
be a maximal proper face of K, containing H,. By Lemma 2.6, it is of
codimension 1 in K,. We can find y,,. . .,y, € K, such that H,y,,...,y,
are affinely independent and

Aff(Hu{y,, ..., y,}) = AHK,.
If we can show that

Aﬁ(HIU {yl" LR yn}) = Afle,
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then H, is of codimension (n+1) in K, hence of codimension 1 in H.
In fact, for z € K,, we have

=M+ ,Ay;, whereA+>? A, =1 and yeH.
If A=0, then z is in Aff(H, U {y,,...,¥,}). If 140, then
A=Ay A =1
and
A =213 Ay, € AffK,,
which implies that y is in HnAff K,. But HnAff K, is a proper face of H
containing H,, hence HnAff K, = H,. This shows that
yeH, and zeAff(Hu{y,,...,¥%.)) -

The reverse inclusion is obvious, so we have

Aff(H, v {yI’ ce yn}) = AffK,

and the proof is complete.

Lremma 2.8. (Dubins [3]) Let K be a linearly closed, linearly bounded
convex set and let M be a finite codimensional slice in K. Let x be an extreme
point in M, then x is a finite convex combination of extreme points of K.

Proor. (This proof differs from that of Dubins.) Let F be the smallest
face of K containing M. Then M is of finite codimension in F. Let

F' ={yeF: Aly+(1—-A)z = x whereze F and 0<i<1},
Then F’ is a face of F. Since z is an extreme point of M, we have
AffF' n Aff M = {«}

and since M is of finite codimension in F, this implies that Aff#’ is
finite dimensional. Since F'’ is linearly closed and linearly bounded, it
is compact. Hence z is a convex combination of finitely many extreme
points of F’ and these are also extreme points of K.

ProrosriTiON 2.9. If H is an infinite dimenstonal L-polytope, then every
maximal face H, of H contains infinitely many extreme points.

Proor. Let K, K, be the faces containing H, H, respectively defined
as in Proposition 2.7. We see that K is an infinite dimensional L-ball
or a Choquet simplex and K, is a maximal face of K,. Hence it contains
infinitely many extreme points. We will let 9,C' denote the set of extreme
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points on a convex set C. Suppose 0,H, were finite. By Dubins’ lemma,
there exists a finite set 4 contained in 0,K, such that each point of 0,H,
is a convex combination of points in 4. Let B<0,K,\ 4 such that Bis a
finite set and conv B has dimension greater than n where n is the codimen-
gion of H in K. It is obvious that conv BnH is nonempty, compact and
is a face of H hence contains an extreme point of H. Furthermore,

convBnH ¢ K;nH = H,,

so we can find an extreme point in H, which is not in ¢,H, which is a
contradiction.

ProrosrrioN 2.10. A maximal face of an infinite dimensional L-polytope
cannot be centrally symmetric.

Proor. Let H, H,, K,, K, be defined as in Proposition 2.7. If H,c K,
then by a proof similar to Lemma 2.3, the face K, is compact and hence
it is a Choquet simplex. Suppose H, is symmetric about a. H, is also
symmetric about a. Let x+a be an extreme point of H,, then —x4a is
also an extreme point and both of them are finite convex combinations of
extreme points of K, hence the same is true for

a = }@+a)+i(—-x+a).

Let 4 be a probability measure representing a and supported by extreme
points z,,. . .,%,, ¥1,. . ., Y, of K, such that v+« and —x+a are convex
combinations of z,,. . .,x, and y,,. . .,¥,, respectively. Since H, is infinite
dimensional, we can find another extreme point y € H, which is not in
the affine variety generated by the above extreme points. Hence we can
find another boundary probability representation for a. This contradicts
the existence of a unique boundary probability measure representing
each point of a Choquet simplex.

Next, consider the case where H, ¢ K,. Then there exists z € H,\ K,
€ K\ K,. If H, has a symmetric center a, than H, also has a as a center
of symmetry. Hence z, —x+ 2a are symmetric with respect to ¢ and

jx+3(—2+2a) = acH,cK,.

If —xz+2a € K, then since K, is a face, « will be in K; which is impossible.
Hence —z+2a ¢ K, which also contradicts the fact that H 1€ K. We
conclude that K, cannot be centrally symmetric.

In [10], Phelps showed that the f-polytopes have certain extension
properties and he also characterized the G, face of such polytopes. These
results can be generalized to the class of L-polytopes.
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LemMaA 2.11. (Phelps [10].) Suppose that K is a compact convex set and
M is a closed finste codimensional slice of K. If M is contained in no proper
face of K, then any continuous affine function on M can be extended to a
continuous affine function on K.

TarEoREM 2.12. Suppose that H is an L-polytope and that F is a closed face
of H. If g %8 a continuous affine function on F, then g admits an extension
to a conttnuous affine functional f on H.

Furthermore, there is a uniform bound on the norm of the extension.

Proor. Let H= Mg, where K is an envelope of H and M is a closed
finite codimensional slice of K. By Corollary 2.4, there exists a closed
face F' of K such that F,nH=F and by Lemma 2.11, we can extend ¢
to ¢’ on F,. By [7, Proposition 2.5], we can extend g’ to ¢’ on K. Let f
be the restriction of ¢’ to H; f has the required property.

The last assertion follows from Alfsen [2, p. 114].

THEOREM 2.13. If H is an L-polytope and if F is a closed face of H which
i8 G in H, then there exists a continuous affine function f > 0 on H such that

F ={xeH: f(x) = 0}.

Proor. Let H=M,, where K is an L-ball and M is a closed finite
codimensional slice of K. By Corollary 2.4, we can find a closed G, face F,
in H such that F=HnF, and by [7, Proposition 2.7] there exists a
continuous affine function ¢=0 on K such that

F,={xeK: gx) = 0}.

Let the restriction of g to H be denoted by f; then f is the required func-
tion.

3. Polyhedral vertices of L-polytopes.
DEeriniTION 3.1. Let K be a compact convex subset of a locally convex
space and define
cone (x, K) = x+ | J;50A(K —2) .
A point z in K is called a polyhedral vertex of K if cone(z, K) is closed and

proper.

The definition was introduced by Alfsen and Nordseth [1], who proved
that every extreme point of a Choquet simplex is a polyhedral vertex.



208 KA-SING LAU

Hall-Pedersen [6] proved that this is also true for an «-polytope. In what
follows, we show that it is the case for an L-polytope.

LeMma 3.2. Every extreme point of an L-ball is a polyhedral vertex.

Proor. Let K be the L-ball embedded into 4,(K)*. Suppose a is an
extreme point of K, and suppose that C=cone(0,K —a). We want to
show that C is w*-closed in A (K)*. By [4, Theorem 3.2, Theorem 4.1],

we see that K =(@—0)n(C—a)
for each extreme point a of K. Hence

CnK =Cn(a-C)n(C—a)
=0n(@-C)n(a-C)n(C—a)
= [(3C—1a)+1aln[(}a—1C)+ialn K
= 3}[(C—-a)n(a—C)+a]n K
= §K+a)n K

which is w*-compact. By the Krein-Smulyan theorem, the set C is
w*-closed. That the cone is proper follows from the fact that x is an
extreme point of K. Thus, it is a polyhedral vertex of K.

Lemma 3.3. Let C be a closed cone in a locally convex space and let F
be a finite dimensional subspace. Then F + C is a closed cone.

Proor. Cf. [5, Proposition 7.5].

ProrositioN 3.4. If H is an L-polytope, then every extreme point of H
18 a polyhedral vertex.

Proor. Let K be an envelope of H, so that
H=Kn{redyK)*: hfx) =0, s = 1,...,n},
k- .. b, € A(K). Let a be an extreme point of H. First we claim that
cone(a,H) = M n cone(a,K)

where M is the affine variety generated by H. Indeed, let
z € M n cone(a, K)

and write x=a+A(y—a), where 120 and y € K. If 1=0, then
x = a € cone(a, H).

If 240, then since y € M n K, we have y € H and x € cone(a, H).
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If a is an extreme point of H, then by Dubins’ lemma, it is a convex
combination of extreme points {z,...,z,} of K. Let F be the affine
variety generated by {z,,...,z,}; then

cone(a,K) = cone(z;, K)+F .

Indeed, by translation, we may let @ =0, so that F is a linear subspace.
For Ak € cone(0,K), A=0 and k € K, we have

Ak =z, + Ak —x;)— (1 —A)x; € cone (z,, K)+ F .

Conversely, suppose z=z;+A(k—x,)+y € cone(x,,k)+F where 120,
ke K and y € F. Since (z,+y) and A(k—z,) are in cone(0,K), 1=0 and
ke K, we have

cone(a, K) = cone(z,, K)+F .

By Lemma 3.1 and Lemma 3.3, the set cone(a, K) is closed and by the
first part of the proof, we see that cone(a,H) is closed. It is also a proper
cone since @ is an extreme point of H. Thus a is a polyhedral vertex
of H.

The following result was proved for Choquet simplexes by Alfsen and
Nordseth [1]. We use a similar technique.

ProrosiTioN 3.5. If H is an L-polytope such that the set cone(z,H) 18
closed for each x € H, then H is finite dimensional.

Proo¥r. Let H= Mg, where K is an envelope of H and M is a closed
finite codimensional slice of K. We will prove the proposition by the
following steps:

(i) Let

F,={yeH: ly+(1-A)z = x forsome ze H and 0<A<1}.

We claim that
F, = H n (2x—cone(x, H))

which will show that every F, is closed. Now, y € F,, if and only if there
exist z€ H and 0<A<1 such that

y+(1—2A)z ==,

Equivalently,
y=A—(A1-1)z

Math, Scand. 32 — 14
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where z € H and 0<4< 1, that is,
y=2x—((A1=-1)(z—2)+x), zeH,0<i<1,

which means y € H n (2 — cone (z, H)).

(i) If H, is a maximal face of H which contains infinitely many
extreme points, then there exists a point x in H, such that F, n9,H, is a
countable set. Indeed, let {z;};-, be a countable set of extreme point
in 0,H,. Let

z=3%,Ax;, where 3,>0 and X2, 4,=1.

Let B be the set of extreme points in the envelope K such that each
member of B is a convex component of the z;. By Dubins’ lemma, the
set B is countable. Let G, be the smallest face on K containing F,. By
Lemma 2.3 and by (i), we see that G, is compact and hence it is a Choquet

simplex. We claim that
G,no,K = B.

It is clear that G, N 0, K> B. On the other hand, if

then =4y + (1—A)z for some z€ K and 0 <A< 1. Let u, be a boundary
probability measure representing z. Then Ae,+(1—A)u, is a boundary
probability measure representing x. We thus have two boundary prob-
ability measures representing z and supported by B. This contradicts
the fact that G, is a Choquet simplex. Hence G, n ¢,H =B. It follows
from Dubins’ lemma and G, n H=F, that F, contains only countably
many extreme points.

(iii) Give 0,H, a topology generated by the family of subbasic closed
sets of I consisting of 9,H, and sets of the form F nd,H, where F is closed
face of H;. We claim that 0,H, is compact under this topology. Indeed, let
{4,} be a family of subbasic closed sets in I with the finite intersection
property, then there exists a family of closed faces {G,} of H, such that
Q,nd,Hy=A, for each «. We known that NG, is a nonvoid compact
face in Hj, s0 it contains extreme points of 9,H,. This shows that N A, is
nonempty and thus 0.H, is compact.

(iv) The set 0,H, is a finite set. Indeed, suppose it is an infinite set,
by (ii) we can find a closed face Fy< H, with countably many extreme
points, say, 0,Fy={x;}>,. Let F, be the face generated by {2,
as in (ii) and let 4,, denote the set of extreme points of F,. We see that
{4,)5., is a family of compact sets in J,H and has the finite inter-
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section property, so N ,A4,+@ which contradicts the fact that the
family {4,}7, has void intersection.
(v) By (iv) and Proposition 1.9, we conclude that H is a finite dimen-

sional polytope.

4. Some examples.

In this section, we are going to give some examples which show that
some properties of a finite dimensional polytope do not hold in the class
of L-polytopes.

ExampLE 4.1. The product of two L-polytopes need not be an L-
polytope.

Let F be an infinite dimensional Choquet simplex, considered as a
subset of A(F)*. Let
K = conv(Fu —F),

that is K =unit ball of A(F)*. Then K is an L-polytope. We show that
K x K is not an L-polytope. If K x K were an L-polytope, we would
have K x K =M 5, where K’ is an envelope of K x K and Mg, is a closed
finite codimensional slice of K. The set K x F is a maximal face of K x K
and is compact. Let #; be a maximal face of K’ containing K x F. Then
since K x F' is finite codimensional in F,, we see that F, is compact and
is a Choquet simplex.

Let x,,z, be two extreme points of K such that z,e F, so (z,,%,),
(—x,,%,) are extreme points of K x F. We can write

(@1p%s) = i1 dis  (—2,%,) = 25’1.1 Bizs s

where 4,,8;20, 3¢, 4 =1, 3% ,;=1 and y,;,7; are extreme points
of Fi,t=1,...,n,5=1,...,m, and hence

(0, 25) = 3(D7oq Ays+ 2701 B2)) -

Since K is infinite dimensional, there exists an extreme point x, of K
such that (3, 2,) is not in the linear subspace generated by y;,2;, t=1,...,n,
j=1,...,m. Similarly, we have

(x5, T3) = 22;1 Ay (—mg ) = 2;9=1 B 2
and

(0, x9) = 3201 A y¢’+2;-"=1 Bi' z'),

where 3*_1,/=1, zj=1ﬁ,~’= 1,4/, ;20 and y,/, 2,/ are extreme points
of F,, thus we can find two boundary measures representing the point
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(0,2,) of the Choquet simplex F,. This contradication shows that K x K
is not an L-polytope.

ExamrLE 4.2. The intersection of two L-polytopes is not necessarily
an L-polytope.

Let ¢ be the set of real sequences of the form y=(y,)?., such that

Y= hmn—-»oo Yn»

with supremum norm. Then [, is the dual of ¢ and we let B denote the
unit ball of 7;. If

8 ={z: x, 2 0 for each n, >3 _,z, = 1},

then § is w*-closed and is a Choquet simplex. Take x € § to be the se-

quence
x = (3+222%24,...).

Consider the set  — B. Each y € « — B can be written uniquely as y =z + oz
where z € lin(x—S). We define

B, = {z—oax: z2+axcx—B, zelin(x—S)}

and let B,=B-2z. Both B, and B, are L-polytopes, but we claim that
B;nB, is not an L-polytope. Since § —z and «— 8 are maximal faces of
B, B, respectively, (S—z)n(x—.8) is a face of B;nB,. It is a proper face
‘because

—z € (BynBy)\((S—x)n (z—289)).

‘To show that it is maximal, we need only show that it is of codimension 1.
We let 6,=(x;)j=, be the points in § such that x;=0 for ¢+n and
x,=1. Note that

2--1(3, —8,) € (S—2) n (x—8)
for n>1and lin (8 —z) is the w*-closed subspace generated by {4, —z}3.,.
Furthermore, lin ((S —z)n(x—8)) is the w*-closed subspace generated by
{0, —61}0.2. Now

& —x = (2-2,—2-8,—2-4, )
= g 27 (8, —-6,) .

"This implies that (6,—z) is in lin((S —z)n(z—S)) and
8y—2 = (8,—8)+ (8 —) elin(S—2) 0 (x—8)) .

Hence
lin((8—2z) n (x—8)) = lin(S—=x) .
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Thus, we conclude that (S —x)n(x—S) is of codimension 1 in B,n B, and
hence it is a maximal face of B,nB, Notice that (S—z)n(x—=S) is a
symmetric set with center of symmetry 0. By Proposition 2.10, the set
B;nB, cannot be an L-polytope.

ExampLE 4.3.E‘There exists a compact convex set K such that each
extreme point is a polyhedral vertex, but K is not an L-polytope.

We first observe that if K,, K, are two compact convex sets such that
xy € Ky, z € K, are polyhedral vertexes, then (r,,z,)eK,xK, is a
polyhedral vertex of K, x K,. Now, we can choose K,,K, to be two
L-polytopes such that K, x K, is not an L-polytope (Example 4.1) but
every extreme point of K, x K, is a polyhedral vertex.
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